منابع مشابه
Nanobody Based Dual Specific CARs
Recent clinical trials have shown that adoptive chimeric antigen receptor (CAR) T cell therapy is a very potent and possibly curative option in the treatment of B cell leukemias and lymphomas. However, targeting a single antigen may not be sufficient, and relapse due to the emergence of antigen negative leukemic cells may occur. A potential strategy to counter the outgrowth of antigen escape va...
متن کاملCell-specific targeting by engineered M13 bacteriophage expressing VEGFR2 nanobody
Objective(s): Filamentous bacteriophage M13 was genetically engineered to specifically target mammalian cells for gene delivery purpose. Materials and Methods: A vascular endothelial growth factor receptor 2 (VEGFR2)-specific nanobody was genetically fused to the capsid gene III of M13 bacteriophage (pHEN4/3VGR19). A mammalian expression construct containing Cop-green fluorescent protein (Cop-G...
متن کاملChemically-specific dual/differential CARS micro-spectroscopy of saturated and unsaturated lipid droplets.
We have investigated the ability of dual-frequency Coherent Antistokes Raman Scattering (D-CARS) micro-spectroscopy, based on femtosecond pulses (100 fs or 5 fs) spectrally focussed by glass dispersion, to distinguish the chemical composition of micron-sized lipid droplets consisting of different triglycerides types (poly-unsaturated glyceryl trilinolenate, mono-unsaturated glyceryl trioleate a...
متن کاملEngineered Jurkat Cells for Targeting Prostate-Specific Membrane Antigen on Prostate Cancer Cells by Nanobody-Based Chimeric Antigen Receptor
Background: Recently, modification of T cells with chimeric antigen receptor (CAR) has been an attractive approach for adoptive immunotherapy of cancers. Typically, CARs contain a single-chain variable domain fragment (scFv). Most often, scfvs are derived from a monoclonal antibody of murine origin and may be a trigger for host immune system that leads to the T-cell clearance. Nanobody is a spe...
متن کاملA Nanobody-Based System Using Fluorescent Proteins as Scaffolds for Cell-Specific Gene Manipulation
Fluorescent proteins are commonly used to label cells across organisms, but the unmodified forms cannot control biological activities. Using GFP-binding proteins derived from Camelid antibodies, we co-opted GFP as a scaffold for inducing formation of biologically active complexes, developing a library of hybrid transcription factors that control gene expression only in the presence of GFP or it...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Molecular Sciences
سال: 2018
ISSN: 1422-0067
DOI: 10.3390/ijms19020403